

Versión preliminar

Datos que mueven ciudades: MapaData

Experiencia en Estado de México (Toluca, Jilotepec) y Oaxaca (Oaxaca de Juárez, Salina Cruz, Puerto Escondido) Documento descriptivo Este documento fue financiado en el marco del proyecto de cooperación bilateral denominado "Transición hacia un Sistema Integrado e Inteligente de Transporte Público en México" (TranSIT) entre el Gobierno Federal Mexicano a través de la Secretaría de Desarrollo Agrario, Territorial y Urbano (SEDATU) y el Gobierno de Alemania, a través de la Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, que trabaja por encargo del Ministerio Federal de Cooperación Económica y Desarrollo (BMZ) de Alemania. El objetivo del proyecto es mejorar la calidad y eficiencia del transporte público en México a nivel nacional y subnacional, a través de tres ejes temáticos: (1) desarrollo de instrumentos de toma de decisión, (2) diseño e implementación de proyectos demostrativos, e (3) intercambio de conocimientos y experiencias en temas relacionados con la movilidad.

Primera edición octubre 2025

Publicado por:

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Dag- Hammarskjöld- Weg 1 - 5 65760 Eschborn, Alemania T +49 61 96 79 -0 F +49 61 96 79-11 15 E info@giz.de I www.qiz.de

Agencia de la GIZ en México
Torre Hemicor, PH, Av. Insurgentes Sur 826,
Col. del Valle, Juárez, 03100
Ciudad de México, México
T +52 55 55 36 23 44
E giz-mexiko@giz.de
I https://www.giz.de/en/worldwide/33041.html

Proyecto:

Transición hacia un Sistema Integrado e Inteligente de Transporte Público en México (TranSIT) de la Cooperación Técnica Alemana (GIZ) México

Coordinación Institucional

Trufi Association e.V.

Rodenbeker Str. 18 c 22395 Hamburg Leonardo Gutiérrez Project Manager

Cooperación Técnica Alemana (GIZ) en México

Isabel von Griesheim Directora del Proyecto TranSIT Leon Becker Asesor técnico en Movilidad

Desarrollo de Contenidos

Luz Choque Jacinto (Trufi Association) Leonardo Gutiérrez Uscátegui (Trufi Association)

Revisión Editorial Codeando México

Alma Rangel Macías Directora Ejecutiva

GIZ México

Angélica Lara
Asesora técnica Jr. GIZ México
José Manuel Landin
Asesor técnico GIZ México
Leon Becker
Asesor técnico en Movilidad GIZ México
Neimy Girón
Asesora técnica GIZ México
Marco García
Asesor en Comunicación GIZ México

Humanitarian OpenStreetMap Team

Céline Jacquin
Senior Manager
Trufi Association
Eva Asturizaga
Business Development and Grants Manager

Diseño editorial e ilustraciones:

Trufi Association y GIZ México

Fotografía de portada:

Donobelo

Fotos al interior del documento:

Como se indica en cada fotografía

Derechos de autor:

Se permite la reproducción, total o parcial, por razones educacionales o sin ánimo de lucro de esta publicación, sin la autorización especial del portador de los derechos de autor, siempre y cuando la fuente sea citada.

Deslinde de responsabilidad:

Los hallazgos, interpretaciones y conclusiones expresadas en este documento están basados en la metodología y recopilación de insumos facilitadores por la GIZ México y sus consultores. No obstante, GIZ México no puede ser responsable del contenido de este documento ni garantiza la precisión o integridad de la información por errores, omisiones o pérdidas que surjan de su uso.

Forma de citar:

GIZ (2025). MapaData - Generación y digitalización de datos de transporte público urbano a través de comunidades de mapeo colaborativo y herramientas de software libre.

Por encargo del Ministerio Federal de Cooperación Económica y Desarrollo (BMZ) de Alemania.

CRÉDITOS Y AGRADECIMIENTOS

Este documento ha sido realizado gracias al apoyo de las siguientes organizaciones, dependencias y personas.

Contrapartes estatales y municipales:

Secretaría de Movilidad del Estado de México (SEMOV)

Equipo técnico de la Secretaría de Movilidad del Estado de México (SEMOV)

Secretaría de Movilidad de Oaxaca (SEMOVI)

Equipo técnico de la Secretaría de Movilidad de Oaxaca (SEMOVI)

Ayuntamiento Constitucional de Jilotepec

Equipo de Planeación y Movilidad

Organizaciones aliadas:

Codeando México A.C.

Organización sin fines de lucro de tecnología cívica; coordinación local y vinculación comunitaria.

Humanitarian OpenStreetMap Team (HOT)

Organización global sin fines de lucro que impulsa el mapeo abierto y participativo

Donobelo

Equipo de Comunicaciones — Donobelo Estrategia, producción y coordinación de comunicaciones del proyecto

GEOID S. de R.L. de C.V.

Apoyo a digitalización, acompañamiento a voluntarios y comunicación de resultados

Aliados académicos nacionales e internacionales:

YouthMappers – Universidad Autónoma del Estado de México (Facultad de Geografía)

Participación voluntaria en recolección y validación de datos a través de comunidades de mapeo colaborativo y herramientas de software libre.

Universidad La Salle Oaxaca

Validación de datos, formación y levantamiento en territorio

Universidad Regional del Sureste (URSE)

Validación de datos, formación y levantamiento en territorio

Colegio Salesiano de Duitama (Colombia)

Apoyo educativo en mapeo colaborativo y revisión de datos

Referencia metodológica:

ITDP México — Atlas de Acceso al Transporte Público

Cálculo de cobertura y acceso con base en datos GTFS

PREÁMBULO

En el marco del proyecto Transición hacia un Sistema Integrado e Inteligente de Transporte Público en México (TranSIT), presentamos este manual como un esfuerzo conjunto para mejorar la gestión del transporte público a partir de información confiable, abierta y útil para la ciudadanía. El documento reúne los avances de un piloto orientado a ordenar y publicar, por primera vez, los datos de los sistemas de transporte público en formato GTFS, con el fin de fortalecer la planificación, facilitar la toma de decisiones y promover servicios multimodales más eficientes e inclusivos.

El proyecto se desarrolló en Toluca y Jilotepec (Estado de México), así como en Oaxaca de Juárez, Salina Cruz y Puerto Escondido (Oaxaca). En ambos estados, donde predomina el transporte colectivo, la digitalización era insuficiente, pues la información existente estaba dispersa entre dependencias, sin una estructura estandarizada ni actualizaciones periódicas, lo que limitaba la capacidad de las autoridades para planificar y comunicarse con la ciudadanía, y dificultaba el acceso de las personas usuarias a información confiable sobre rutas y horarios. Frente a ello, este piloto creó y publicó una base GTFS (General Transit Feed Specification), que integra paradas, rutas, horarios y calendarios, sentando los estándares y la gobernanza necesarios para su actualización y uso público.

Este trabajo se enmarca en los Objetivos de Desarrollo Sostenible (ODS), adoptados por las Naciones Unidas en 2015, y aporta directamente al ODS 11 (Meta 11.2) al apoyar el

acceso seguro, asequible y sostenible al transporte público, y refuerza el ODS 17 (Meta 17.18) al aumentar la disponibilidad de datos de calidad y oportunos para la gestión pública. La base generada permite, además, habilitar metodologías internacionales para evaluar el acceso conveniente al transporte, fortaleciendo la capacidad institucional para priorizar inversiones y mejorar la experiencia de viaje de las personas que lo utilizan.

El piloto se implementó con participación institucional y transferencia de capacidades a equipos técnicos locales, involucrando a autoridades estatales y municipales, academia y comunidades de mapeo. La publicación abierta de los datos, junto con lineamientos de gobernanza y mantenimiento, permiten que esta primera versión sea sostenible en el tiempo y pueda ampliarse conforme evolucionen los servicios y necesidades del territorio. Como complemento, se dispone de un aplicativo móvil de planificación de viajes (Rutómetro) que acerca la información a las personas usuarias y demuestra el valor práctico de los datos abiertos.

Con este manual reafirmamos nuestro compromiso con una movilidad basada en evidencia, con la transparencia y con la colaboración entre sectores. Invitamos a las instituciones, a la academia y a la ciudadanía a usar, mejorar y mantener esta base común de datos para que el transporte público sea más claro, más cercano y más útil para todas las personas.

MapaData - Generación y digitalización de datos de transporte público urbano a través de comunidades de mapeo colaborativo y herramientas de software libre

ÍNDICE

Índice	5
Resumen ejecutivo	7
1. Introducción	9
2. Definición y objetivos	13
2.1 Objetivo general	14
2.2 Objetivos específicos	14
2.3 Ejes del proyecto	15
3. Implementación	16
3.1 Planificación e inicio del proyecto	17
3.1.1 Enfoque metodológico para la fase inicial	17
3.1.2 Evaluación inicial de datos de transporte por ciudad	23
3.1.3 Supuestos, riesgos y mitigaciones	23
3.2 Procesamiento de datos	24
3.2.1 Fases de tratamiento de datos	24
3.3 Proceso por ciudad	27
3.3.1 Procesamiento de datos en Toluca (Área Metropolitana)	27
3.3.2 Procesamiento de datos en Jilotepec de Molina Enríquez	28
3.3.3 Procesamiento de datos Oaxaca de Juárez	28
3.3.4 Procesamiento de datos en Salina Cruz	30
3.3.5 Procesamiento de datos en Puerto Escondido	33
3.4 Distribución de rutas digitalizadas	34
4. Lecciones aprendidas	35
4.1 Gobernanza del dato desde el día cero	36
4.2 Digitalizar primero, estandarizar después	36
4.3 Acuerdo de Alcance de Rutas (AAR)	37
4.4 Paquete mínimo de datos antes del arranque	37
4.5 Alianzas locales que multiplican el avance	37
4 6 Trabajo de campo eficiente	38

5. Procesos de replicabilidad	39
5.1 Punto de partida	40
5.2 Principio operativo	40
5.3 Ruta de implementación recomendada	40
5.4 Gestión de riesgos	41
5.5 Condiciones habilitantes mínimas	42
6. Próximos pasos	44
6.1 Actualización y mantenimiento continuo	45
6.2 Colaboración y control institucional	45
6.3 Ampliación de cobertura y red intermunicipal	45
6.4 Aprovechamiento y uso de datos abiertos	45
6.5 Replicabilidad, intercambio y escalamiento	46
6.6 De ciudad en ciudad: replicar con datos y código abiertos	46
Referencias bibliográficas	51
Anexos	53
ANEXO 1. Visualización de redes de transporte Público	54
ANEXO 2. Tabla Resumen	57
ANEXO 3. Talleres y Capacitaciones	58
ANEXO 4. Reporte de actividades de comunicación	59
ANEXO 5. Herramientas tecnológicas disponibles	61

Datos que mueven ciudades: MapaData

Resumen ejecutivo

INFORMACIÓN GENERAL		
Lugar	Estado de México (Toluca y	
	Jilotepec) y Oaxaca (Oaxaca	
	de Juárez, Salina Cruz y	
	Puerto Escondido).	
Duración	18 meses	
Presupuesto	134,990.24 €	
Contrapartes	SEMOV (Estado de México) ·	
	SEMOVI (Oaxaca)	
Objetivo	Fortalecer la gestión del	
	transporte público mediante la	
	generación de datos abiertos y	
	el uso de estándares digitales,	
	fomentando capacidades	
	locales para su sostenibilidad.	

Tabla 1. Información General

CONTEXTO

En Oaxaca y en el Estado de México no existen datos centralizados ni suficientemente digitalizados del transporte público; la información está fragmentada y no es Este comparable. proyecto oficialmente por primera vez el levantamiento y estandarización de la red en formato GTFS, con participación institucional y universitaria, y transferencia de capacidades locales, para establecer una base única e interoperable que fortalezca la gobernanza de datos, la identificación y trazabilidad de rutas y paradas, y el uso público de la información.

EJES TRANSVERSALES

Digitalización

Participación Ciudadana

Transporte Público

Gobernanza de datos

Planificación sostenible

DESCRIPCIÓN

Creamos datos abiertos de transporte en formato GTFS para las ciudades objetivo. Levantamos y estandarizamos la información de rutas, recorridos y horarios utilizando herramientas libres como OpenStreetMap, mediante participación ciudadana y en coordinación con autoridades y universidades locales. Estos datos se publican como una base única e interoperable y también están disponibles en un aplicativo móvil de planificación de viajes (Rutómetro), para que la ciudadanía consulte sus trayectos y las instituciones planifiquen y mejoren el servicio.

BENEFICIOS

Se reportan algunos resultados, beneficios o lecciones aprendidas derivados del proyecto Datos que mueven ciudades: MapaData

- Datos abiertos y claros: GTFS único e interoperable para uso ciudadano e institucional.
- Mejor planificación: rutas y calendarios ordenados para priorizar mejoras.
- ✓ Transparencia: información pública y trazable.
- ✓ Mejora de la Cartografía Base de las ciudades: Disponible en OpenstreetMap.

- ✓ Uso cotidiano: Rutómetro facilita planear viajes desde el móvil.
- √ Herramienta práctica para el día a día. Rutómetro.
- √ GTFS base publicado: para Toluca, Jilotepec, Oaxaca de Juárez, Salina Cruz y Puerto Escondido.
- ✓ Estructura estándar: de rutas, recorridos y calendarios.
- ✓ Capacidades instaladas: en OSM y mantenimiento de GTFS.

La **Tabla 1** presenta el **alcance cuantitativo** del proyecto, aplicando un **criterio único de estimación** (40 % y 2,5; notas 1–2) para facilitar la **priorización y contraste entre ciudades**, tomando como base las **poblaciones 2020** del ámbito operativo de cada red.

Área de referencia	GTFS - Rutas digitalizadas	Población 2020	Personas beneficiadas (40 %) ¹	Viajes diarios estimados (×2.5)²
Toluca (ZMVT)	622	2,353,924	941,570	2,353,924
Jilotepec (municipio)	65	87,671	35,068	87,671
Oaxaca de Juárez (municipio)	110	270,955	108,382	270,955
Salina Cruz (municipio)	27	84,438	33,775	84,438
Puerto Escondido (localidad urbana)	32	29,903	11,961	29,903
Totales	856	2,826,891	1,130,756	2,826,891

Tabla 2. Beneficios cuantitativos del proyecto MapaData por ciudad

_

¹ **Nota (40 %)**: Se adopta 40 % por coherencia con evidencia local (Toluca ~41 %, SEDUI/INEGI; Puerto Escondido 39–42 %, DataMéxico 2020) y marco nacional (~30 %, Estrategia Nacional de Movilidad y Seguridad Vial 2023–2042). Ajustable si hay porcentaje local específico.

² **Nota (×2.5)**: Se usa **2,5 viajes/persona/día** como coeficiente estándar, respaldado por estudios del **International Transport Forum–OECD**

1. Introducción

MapaData tuvo como propósito crear datos abiertos y utilizables del transporte público, permitiendo que la ciudadanía cuente con información clara y accesible para planificar sus viajes, y que las autoridades dispongan de herramientas para mejorar la gestión del servicio.

En México, la falta de datos centralizados y comparables ha sido uno de los principales desafíos para la planificación del transporte. En la mayoría de las ciudades, los sistemas de transporte colectivo funcionan sobre la base de acuerdos operativos tradicionales y sin una base digital consolidada. Esta situación limita la capacidad institucional para planificar y comunicar de manera transparente, y al mismo tiempo deja a las usuarias personas sin acceso información actualizada sobre rutas, recorridos y horarios.

Para responder a esta necesidad, el proyecto se enfocó en la creación de información estandarizada en formato General Transit Feed Specification (GTFS), el estándar global reconocido para representar digitalmente los sistemas de transporte público. Desde el inicio se garantizó que los datos fueran abiertos verificables. Utilizando

herramientas libres como OpenStreetMap (OSM) y un enfoque de participación ciudadana que involucró a comunidades locales, universidades y autoridades de transporte.

El trabajo se desarrolló entre septiembre de 2024 y marzo de 2026 en dos estados:

- Estado de México, en las ciudades de Toluca y Jilotepec.
- Oaxaca, en Oaxaca de Juárez,
 Salina Cruz y Puerto Escondido.

La iniciativa fue implementada por Trufi Association e.V., en alianza con Codeando México Humanitarian ٧ OpenStreetMap Team (HOT), con el apoyo de la Cooperación Técnica Alemana (GIZ) México a través del proyecto Transición hacia un Sistema Integrado e Inteligente del Transporte Público en México (TranSIT). También participaron autoridades estatales y municipales, así como comunidades internacionales como Colegio el

Salesiano de Duitama, que aportaron su experiencia en mapeo colaborativo.

Como resultado, se generaron bases GTFS completas y un aplicativo móvil de de viajes, planificación con cartografia base mejorada, Rutómetro (https://Rutometro.app), basado en el código abierto de Trufi Association, que permite consultar rutas y trayectos de sencilla. Esta información manera constituye la primera base pública e interoperable del transporte colectivo en los territorios del proyecto.

El proyecto contribuye directamente a los Objetivos de Desarrollo Sostenible (ODS), en especial al ODS 11.2, que promueve el acceso "fácil y conveniente" al transporte público, y al ODS 17.18, que impulsa la disponibilidad de datos abiertos y de calidad para la toma de decisiones. Si bien los datos generados son estáticos y su actualización futura dependerá de las autoridades locales, el proyecto deja una metodología clara y replicable para su mantenimiento y ampliación sistemas integrados y servicios de Movilidad como Servicio (MaaS).

Alcances y límites de MapaData

El proyecto desarrolló un conjunto de datos abiertos de transporte público en formato GTFS para diversas regiones de México, con el objetivo de mejorar la planificación, el análisis y el acceso ciudadano a la información del sistema de transporte.

Se desarrollaron GTFS base para la Zona Metropolitana de Toluca, incluyendo municipios aledaños y la ciudad de Jilotepec, y para las ciudades de Oaxaca Juárez, Salina Cruz y Puerto Escondido, en el Estado de Oaxaca. conjuntos de datos fueron Estos publicados en los portales institucionales de los gobiernos estatales correspondientes y, además, en un portal nacional de datos abiertos de movilidad (https://hdtp.codeandomexico.org/), que busca centralizar y visibilizar información de transporte de diversas ciudades del país.

La iniciativa se ejecutó en colaboración con la Secretaría de Movilidad del Estado de México (SEMOV), la Secretaría de Movilidad del Estado de Oaxaca (SEMOVI) y los gobiernos municipales participantes, con el apoyo técnico de Trufi Association e.V., Codeando México

y Humanitarian OpenStreetMap Team (HOT). Además, contó con la participación de universidades ٧ comunidades locales, entre ellas la Universidad del Estado de México, la URSE, la SALLE y el Colegio Salesiano de Duitama (Colombia), promoviendo una metodología abierta, participativa basada en herramientas libres como OpenStreetMap y JOSM.

Los datos GTFS generados son estáticos, sin componentes en tiempo real, aunque el sistema se diseñó como base para futuras integraciones de servicios como seguimiento vehicular o información en vivo. La ciudadanía puede consultar la información a través del aplicativo móvil

Rutómetro, basado en la tecnología de Trufi Association, que permite planificar viajes y conocer las opciones de transporte público en las ciudades intervenidas.

La actualización y ampliación futura de los datos dependerá de las capacidades locales fortalecidas durante el proyecto y del compromiso institucional de las autoridades. Este esfuerzo sienta las bases para avanzar hacia un cubrimiento estatal completo, la incorporación de nuevos servicios en Toluca y otras regiones, y la consolidación de un ecosistema digital interoperable que contribuya a los Objetivos de Desarrollo Sostenible 11.2 y 17.18.

2. Definición y Objetivos

2.1 Objetivo general

Contribuir a la mejora de la gestión del transporte público urbano mediante la generación de **datos abiertos**, fortaleciendo las capacidades locales en el uso de herramientas digitales para planificar y comunicar la información del sistema de transporte.

GRÁFICO 1. Ciudades parte del proyecto

2.2 Objetivos específicos

- Generar y publicar datos abiertos del transporte público en formato GTFS para las ciudades del Estado de México (Toluca y Jilotepec) y del Estado de Oaxaca (Oaxaca de Juárez, Salina Cruz y Puerto Escondido), asegurando su interoperabilidad y conformidad con los estándares internacionales.
- Fortalecer la capacidad técnica local mediante la formación de

- equipos comunitarios, técnicos y universitarios en el uso de herramientas libres como **OpenStreetMap**, **JOSM** y otras plataformas de edición y validación de datos de transporte.
- Desarrollar y poner en marcha un aplicativo móvil de planificación de viajes, basado en la tecnología abierta de Trufi Association (Rutómetro), que permita a la ciudadanía acceder a información sobre rutas y horarios del transporte público de manera sencilla.
- Consolidar modelo un participativo У sostenible gestión de datos, integrando la colaboración entre gobiernos estatales. municipales, universidades y la sociedad civil organizada para la actualización y continuo mantenimiento información.
- Contribuir a la mejora de la planificación y transparencia en la gestión del transporte, brindando a las autoridades datos comparables, verificables y accesibles que sirvan como base para políticas públicas y sistemas de movilidad inteligente.

2.3 Ejes del proyectoLos ejes transversales del proyecto se alinean con los Objetivos de Desarrollo Sostenible, en especial los ODS 11.2 (transporte accesible y sostenible) y 17.18 (fortalecimiento de los sistemas de datos).

Cada eje representa un componente esencial del enfoque de transformación digital aplicado a la movilidad urbana:

	Eje	Descripción
	Digitalización	Creación y estandarización de datos de transporte en formato GTFS mediante herramientas abiertas y mejora de cartografía base.
<u>s</u>	Participación ciudadana	Incorporación de comunidades locales, universidades y voluntariado OSM en el levantamiento de información.
	Transporte público	Mejora de la accesibilidad del transporte público en las ciudades
	Gobernanza de los datos	Coordinación institucional para la publicación, mantenimiento y actualización de los conjuntos de datos.
× >	Planificación sostenible	Uso de los datos para mejorar la toma de decisiones y ofrecer servicios de planificación de rutas (Rutómetro).

Tabla 3. Ejes transversales

3. Implementación

3.1 Planificación e inicio del proyecto

3.1.1 Enfoque metodológico para la fase inicial

Se estructuró en tres componentes secuenciales y complementarios:

- 1. Diagnóstico del mapa base.Comparación sistemática entre
 OpenStreetMap (OSM) y fuentes oficiales
 (INEGI/DENUE) para identificar brechas de
 cobertura, conectividad y atributos, con
 extracción/validación mediante Overpass,
 JOSM y QGIS.
- 2. Formación y fortalecimiento de capacidades.- Capacitaciones a personal técnico, universidades y voluntariado en edición y validación (iD Editor, JOSM, MapRoulette, Mapillary, StreetComplete) bajo estándares HOT para garantizar calidad y trazabilidad.

- 3. Priorización y planificación de la intervención.- Selección de zonas y tareas con indicadores de mejora (limpieza, normalización y consistencia topológica; completitud de POIs (Puntos de Interés) y Red vial para asegurar impacto y medibilidad desde el inicio.
- 4. Edición sistemática de la cartografía en OpenStreetMap para todas las ciudades del proyecto, completando y corrigiendo su red vial en la cercanía del sistema de transporte actual, e integrando los puntos de interés más a tractores de movilidad de tipo comercial y equipamiento público, integrando bases de datos del INEGI (DENUE) a este mapa.

3.1.2 Evaluación inicial de datos de transporte por ciudad

- Toluca (Edomex). Existían insumos iniciales KML/KMZ, que posteriormente se actualizaron a 622 rutas de la Zona 1; sobre estos datos se realizó limpieza y estandarización intensiva.
- Oaxaca de Juárez.- Datos urbanos oficiales listos para integrar; faltaba completar el componente suburbano mediante levantamiento y validación.
- Salina Cruz.- Existían datos antiguos y desactualizados; se sustituyeron por un nuevo trabajo de campo con equipos locales y validación posterior.
- Puerto Escondido.- Ausencia de digitalización previa; se requirió depurar/normalizar insumos institucionales y complementar con verificación focalizada.
- Jilotepec.- Se incorporó por contar con buena base previa, lo que permitió una integración ágil y bajo la misma metodología.

3.1.3 Supuestos, riesgos y mitigaciones

En la planificación partimos del supuesto de que todas las ciudades contaban con una base digitalizada de rutas; en la práctica, esto fue heterogéneo. Puerto Escondido y Salina Cruz no tenían base y se construyó conjuntamente con las autoridades; Oaxaca de Juárez y Toluca sí disponían de insumos pero incompletos ٧ con inconsistencias (geometrías rotas, trazos en contravía y desactualización), lo que exigió trabajo adicional, especialmente en Toluca, por su dimensión.

Como mitigación en esta fase, se aplicó construcción guiada de la base cuando no existía, usando insumos en KML, GeoJSON y trabajando principalmente la geometría de las rutas con nombres de origen—destino, operador y un código de ruta (en varios casos definido junto con las autoridades, p. ej., Toluca).

La verificación técnica se realizó ruta por ruta contra la red vial de OpenStreetMap (sentidos y tipo de vía), con apoyo de Mapillary para evidencia en calle, y la validación del feed resultante se ejecutó con el validador de GTFS de MobilityData (https://gtfs-validator.mobilitydata.org/).

Esta combinación permitió controlar calidad e interoperabilidad desde el arranque sin ampliar alcances ni introducir riesgos operativos.

GRÁFICO 2. Fases de procesamiento de datos

3.2 Procesamiento de datos

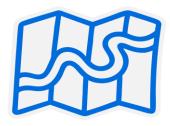
3.2.1 Fases de tratamiento de datos

El proceso técnico de construcción de datos de transporte público se desarrolló en seis fases sucesivas, diseñadas para garantizar la calidad, coherencia y reutilización de la información generada. Estas fases corresponden al ciclo de tratamiento de datos, que abarca desde la recolección inicial hasta su publicación y uso en aplicaciones digitales.

1. Recepción de datos

Se recopilaron las fuentes primarias y secundarias disponibles, incluyendo información oficial proporcionada por las autoridades de transporte, registros municipales, y trazas GPS recolectadas.

2. Preprocesamiento


Los datos brutos fueron limpiados y reorganizados para eliminar duplicidades y asegurar su coherencia espacial. Se corrigieron errores de geometría y continuidad, y se estandarizaron nombres y atributos.

Esta fase contó con el apoyo del **aliado local Codeando México**, que coordinó el trabajo con los equipos de campo y las comunidades, facilitando la recolección y validación de información junto a los actores gubernamentales y municipales que proporcionaron los insumos iniciales.

Gracias a este trabajo colaborativo, se consolidó una red de transporte base coherente, verificada en terreno y lista para su representación en OpenStreetMap.

3. Mapeo en OpenStreetMap

Desde el inicio del proyecto y a partir de la proyección de cobertura que se tenía de la red de transporte por digitalizar, se llevó a cabo una fase transversal de mejora del mapa base, indispensable para garantizar la calidad de los datos de transporte.

Antes y durante el procesamiento de rutas, el equipo y los aliados locales trabajaron en completar y actualizar elementos del entorno urbano en OSM como POIs incluyendo comercios y empresas principales, equipamientos públicos y sociales, así como vías secundarias incluyendo coberturas más recientes por crecimiento urbano — que, aunque no forman parte directa del GTFS, resultan esenciales para que las rutas y la planificación en el aplicativo funcionen correctamente. Esta labor de

fortalecimiento cartográfico fue desarrollada con el apoyo del **HOT**, que facilitó la capacitación en mapeo por parte de amplios grupos de voluntarios y la organización y validación de tareas colaborativas.

Con los datos ya depurados, se realizó el mapeo específico de transporte público dentro de la plataforma OSM siguiendo el esquema Public Transport Version 2 (PTv2), el estándar internacional para representar redes de transporte público. Esta metodología define rutas. secuencias de paradas, relaciones y conexiones entre líneas, asegurando compatibilidad global y trazabilidad comunitaria.

El mapeo fue realizado por el equipo técnico de Trufi Association, en colaboración con voluntarios, universidades locales y aliados internacionales.

Gracias a este trabajo conjunto se consolidó una red digital coherente, abierta y verificable por cualquier usuario, fortaleciendo la calidad y la trazabilidad de los datos en OSM.

4. Generación del GTFS

La información mapeada se transformó en el formato **GTFS**, un estándar abierto que describe paradas, rutas, horarios y

calendarios. Este formato es reconocido internacionalmente y permite que los datos se integren en sistemas de planificación de transporte, portales de datos abiertos y aplicaciones móviles. ΕI **GTFS** constituye la base interoperable sobre la cual se pueden servicios de construir análisis. planificación o movilidad como servicio (MaaS).

En esta fase, los conjuntos de datos generados fueron validados mediante el validador oficial de MobilityData (https://gtfs-validator.mobilitydata.org/), una herramienta internacional de referencia que garantiza el cumplimiento estricto del estándar GTFS.

Esta validación permitió verificar la consistencia de horarios, rutas y paradas, asegurando que los datos puedan ser utilizados sin restricciones por aplicaciones y plataformas de planificación de transporte a nivel global.

5. Validación y pruebas de planificación

Los GTFS fueron verificados mediante simulaciones de planificación de viajes en servidores de OpenTripPlanner (OTP) (https://www.opentripplanner.org/). Autoridades y equipos locales probaron recorridos reales y ajustaron rutas cuando los resultados no coincidían con la operación en campo. Este proceso iterativo garantizó que la información publicada reflejara con precisión la red de transporte.

6. Implementación en aplicación móvil

Finalmente, los datos se integraron en el aplicativo Rutómetro, disponible para Android e iOS (https://Rutometro.app), que permite planificar viajes en las ciudades del proyecto, desarrollado sobre código abierto de Trufi Association, ofrece a la ciudadanía acceso directo y gratuito a los datos del sistema, consolidando el vínculo entre la digitalización de datos y la mejora de la experiencia de transporte público.

3.3 Proceso por ciudad

3.3.1 Procesamiento de datos en Toluca (Área Metropolitana)

En la Zona Metropolitana de Toluca, el proyecto se desarrolló en estrecha colaboración con la SEMOV y su equipo técnico, quienes suministraron información inicial en formato KML. Desde el inicio del proyecto, el HOT realizó un mapeo extensivo de POIs, los resultados consolidados pueden consultarse en la Tabla 2, donde se presentan los totales por categoría mapeada.

Categoría de POIs	Cantidad
Servicios educativos	5,024
Salud y asistencia social	7,648
Transportes / correos / almacenamiento	811
Esparcimiento / cultural / deportivo	2,487
Comercio al por mayor	5,315
Total	21,285

Tabla 4. Resumen POIs Toluca

El proceso fue implementado por personas voluntarias estudiantes de la Universidad Autónoma del Estado de México (UAEMex), previamente capacitadas y acompañadas en todo momento por HOT, tanto en la edición

directa de OpenStreetMap como por medio de mapeo en campo utilizando aplicaciones móviles.

Además del mapeo remoto de elementos urbanos, **Codeando México** facilitó la coordinación con los equipos de campo y las comunidades para la digitalización en campo de unidades de transporte, fortaleciendo el vínculo entre autoridades, ciudadanía y datos abiertos.

En total, se digitalizaron 622 rutas de transporte público, un volumen que representó el principal desafío técnico del proyecto. Además, la ausencia de una codificación oficial de rutas y la necesidad realizar de correcciones por inconsistencias geométricas de continuidad — como recorridos contravía o trazos por vías no habilitadas, como peatonales exigieron un minucioso trabajo de revisión ٧ depuración de los datos.

El mapeo de rutas de transporte en OSM fue liderado por Trufi Association, con el apoyo de voluntarios del Colegio Salesiano de Duitama, consolidando un trabajo de cooperación internacional.

Concepto	Valor
Rutas totales	622
digitalizadas	
Fecha de	Enero 2025
capacitación	
Participantes	SEMOV (Estado de
directos	México);
	Youthmappers
	UAEMex (Universidad
	Autónoma del Estado
	de México).

Tabla 5. Resumen recolección de datos Toluca

El resultado fue un GTFS completo, validado y publicado, disponible tanto en el portal institucional como en el aplicativo móvil Rutómetro, permitiendo a los ciudadanos planificar sus viajes con información confiable y actualizada.

3.3.2 Procesamiento de datos en Jilotepec de Molina Enríquez

En el municipio de Jilotepec de Molina Enríquez, se implementó una réplica metodológica del proceso desarrollado en Toluca, bajo la coordinación de la SEMOV y con la colaboración Codeando.

El municipio de Jilotepec presentó una red más acotada, compuesta por 65 rutas de transporte público, lo que permitió realizar un trabajo de mayor precisión en la verificación de recorridos y paradas. La información fue mapeada en OSM y convertida al formato GTFS, siguiendo los

mismos estándares técnicos y de validación establecidos en el proyecto.

La colaboración con los equipos técnicos municipales permitió afinar detalles de cobertura y nomenclatura, asegurando la coherencia del sistema con las rutas realmente operativas. El conjunto final de datos fue validado, publicado y disponible en el aplicativo Rutómetro, integrándose al ecosistema estatal de planificación de transporte público.

Como resultado adicional, la experiencia en Jilotepec fortaleció las capacidades locales para la gestión y actualización continua de datos abiertos de movilidad, sentando las bases para futuras expansiones hacia otros municipios del Estado de México.

Para fortalecer la utilidad del mapa, se incorporaron 694 POIs de comercio mediante una importación controlada.

3.3.3 Procesamiento de datos Oaxaca de Juárez

En la ciudad de Oaxaca de Juárez, el trabajo se desarrolló en colaboración con la SEMOVI y con las universidades locales La Salle Oaxaca y Universidad Regional del Sureste (URSE), que participaron activamente en la validación,

capacitación y levantamiento de datos, con el acompañamiento del HOT.

La SEMOVI proporcionó información en formato KML, previamente elaborada y de alta calidad técnica, lo que facilitó el proceso de estandarización y conversión. Este insumo fue complementado con trabajo de campo y procesamiento de datos realizados por Codeando México, bajo la supervisión técnica de Trufi Association y el apoyo de voluntarios internacionales del Colegio Salesiano de Duitama, quienes acompañaron el proceso de verificación y fortalecimiento del mapa base en OpenStreetMap.

La entrega se estructuró en dos fases complementarias: primero, SEMOVI aportó una cartografía previamente actualizada en formato KML que sirvió como línea base; posteriormente, para la Rutas Suburbanas se realizó levantamiento de campo específico que documentó 27 rutas. Ambos insumos fueron consolidados, estandarizados a GTFS y verificados en OpenStreetMap, coherencia entre garantizando información institucional y lo observado en territorio.

Concepto	Valor
Rutas	27
mapeadas en	
campo	
Rutas totales	110
digitalizadas	
Equipos de	6 (≈12 personas)
campo	
Fecha de	Enero 2025
capacitación	
Participantes	SEMOVI + Universidad
directos	La Salle Oaxaca +
	Universidad Regional del
	Sureste (URSE) + HOT +
	Codeando México

Tabla 6. Resumen recolección de datos Oaxaca de Juárez

Durante el proceso se realizaron capacitaciones presenciales lideradas por HOT, enfocadas en mapeo colaborativo y uso de herramientas libres como OpenStreetMap y JOSM.

Los estudiantes de la Universidad La Salle Oaxaca y de la URSE (Universidad Regional del Sur Este) participaron activamente en la digitalización y revisión de las rutas y POIs, consolidando una transferencia efectiva de capacidades técnicas que permitió que los equipos universitarios asumieran la fase final de procesamiento y validación de los datos en OpenStreetMap.

Los resultados de su trabajo constituyen los datos actualmente vigentes, integrados en la base GTFS publicada

oficialmente en el **portal del Estado de**Oaxaca, y en el aplicativo móvil

Rutómetro.

Categoría de POIs	Cantidad
Servicios educativos	1,426
Salud y asistencia social	3,031
Transportes / correos / almacenamiento	432

Esparcimiento / cultural / deportivo	683
Comercio al por mayor	1,386
Total	6,958

Tabla 7. Resumen numérico de POIs Oaxaca de Juarez

La digitalización previa realizada por SEMOVI, aunque se encontraba fuera del estándar GTFS, se convirtió en una **base sólida** para acelerar el proceso y garantizar la calidad final de los datos.

El caso de Oaxaca evidencia que la combinación de información institucional organizada, junto con la colaboración académica y comunitaria, permite resultados de alta calidad y promueve la sostenibilidad local del mantenimiento y actualización de los datos de transporte público.

Gracias a que desde etapas tempranas del proyecto se contó con un GTFS operativo para Oaxaca, fue posible dedicar un esfuerzo extensivo a la Fase 5 (pruebas de planificación). Con el apoyo de personas voluntarias de las universidades, se ejecutaron pruebas en OTP para contrastar los resultados de enrutamiento con la realidad en territorio y con la información institucional. Este arranque temprano del GTFS permitió iteraciones de verificación más amplias y profundas, elevando la

consistencia y la calidad final del conjunto de datos.

3.3.4 Procesamiento de datos en Salina Cruz

En la región costera del Estado de Oaxaca, el proyecto se desarrolló en la ciudad de Salina Cruz, en coordinación con la SEMOVI, quienes facilitaron el acceso a la información existente y la articulación institucional local. Participaron universidades locales, entre ellas la Universidad Regional del (UMAR) y la Universidad Regional del

Sureste (URSE), que colaboraron en procesos de capacitación y levantamiento de datos. las cuales, con acompañamiento del HOT, llevaron a cabo actividades de capacitación, levantamiento y verificación de datos como parte del proceso formativo de mapeo colaborativo. El levantamiento de datos fue liderado por Codeando. encargado de la recolección procesamiento de datos; y por Trufi Association. responsable la coordinación técnica V estandarización en formato GTFS.

El trabajo de campo permitió digitalizar y validar las rutas de transporte público urbano ٧ suburbano. integrando información geoespacial precisa coherente con el contexto territorial de la ciudad. Los datos resultantes fueron incorporados en OSM y publicados en el aplicativo Rutómetro. donde las personas usuariaspueden planificar sus trayectos y las instituciones acceder a información abierta y verificable.

Como buena práctica, se resalta el fortalecimiento de capacidades locales impulsado por HOT y las universidades, que garantiza la sostenibilidad del proceso y demuestra que el trabajo conjunto entre comunidades académicas, técnicas y autoridades

puede consolidar una base de datos interoperable y de calidad para la gestión del transporte público.

3.3.4.1 Participación Comunitaria en Salina Cruz

En una fase inicial, 14 personas voluntarias del Colegio Salesiano de Duitama-Colombia colaboraron procesando algunas de las rutas antiguas de Salina Cruz. Sin embargo, al comprobarse que esos datos estaban desactualizados. fueron retirados y reemplazados nuevo por un levantamiento de información en campo.

Categoría de POIs	Cantidad
Servicios educativos	161
Salud y asistencia social	258
Transportes / correos / almacenamiento	51
Esparcimiento / cultural / deportivo	57
Comercio al por mayor	136
Total	663

Tabla 8. Resumen numérico de POIs Salina Cruz

El procesamiento final de las rutas válidas fue realizado por estudiantes de la Universidad La Salle Oaxaca, quienes recibieron capacitación directa en OSM y herramientas de edición de transporte público por parte de Trufi Association y HOT. Esta transferencia de capacidades fue uno de los logros más relevantes del proyecto, ya que permitió que jóvenes universitarios locales asumieran responsabilidad técnica del procesamiento y validación de los datos, fortaleciendo la sostenibilidad apropiación local de la información, siempre con el apoyo de SEMOVI Oaxaca.

Los datos actualmente vigentes del sistema de transporte público de Salina Cruz fueron elaborados por estos equipos

universitarios y constituyen una base GTFS abierta, actualizada e interoperable, disponible para su consulta en el aplicativo Rutómetro.

Concepto	Valor
Rutas totales digitalizadas	43
Equipos de campo	9 (≈18 personas)
Fecha de capacitación	Mayo 2025
Participantes directos	Voluntarios "Mi Primera Chamba" + personal SEMOVI + equipo Codeando México + HOT

Tabla 9. Resumen recolección de datos Salina Cruz

Digitalizar primero, estandarizar después: con registros claros — sea cual sea el formato — el GTFS llega más rápido y mejor. El caso de Oaxaca de Juárez lo prueba: sus datos ya existían antes del proyecto gracias a un trabajo sostenido; cualquier ciudad puede empezar hoy mismo, sin esperar un programa especial, y construir esa base organizada que luego acelera la estandarización.

3.3.5 Procesamiento de datos en Puerto Escondido

Puerto Escondido, con una **población de 29.903 habitantes** y una **extensión territorial superior a los 400 km²**, recibió
la información de rutas directamente de
SEMOVI; por ello, no se realizó
levantamiento en campo.

Categoría de POIs	#
Servicios educativos	138
Salud y asistencia social	202
Transportes / correos / almacenamiento	60
Esparcimiento / cultural / deportivo	45
Comercio al por mayor	118
Total	563

Tabla 10. Resumen numérico de POIs Puerto Escondido

El equipo del proyecto — Codeando México, con supervisión técnica de Trufi Association — se encargó de la depuración, normalización y estandarización a GTFS del insumo institucional, así como de las validaciones de escritorio (consistencia de trazados y

paradas, revisión topológica y pruebas de planificación sobre el conjunto consolidado).

HOT brindó acompañamiento metodológico y fortalecimiento de capacidades a nivel de proyecto. No se registró participación de universidades locales en esta sede.

La data de SEMOVI para Puerto Escondido quedó consolidada en el GTFS del proyecto, verificada en su coherencia interna y lista para su uso en planificación sin requerir campañas de campo adicionales. La disponibilidad de insumos institucionales actualizados (aunque estén fuera del estándar GTFS) acelera la estandarización, reduce costos de verificación en terreno y favorece la calidad final del dataset.

Concepto	Valor
Rutas totales digitalizadas	32
Fecha de capacitación	Mayo 2025
Participantes directos	Personal SEMOVI + equipo Codeando México

Tabla 11. Resumen recolección de datos Puerto Escondido.

3.4 Distribución de rutas digitalizadas

El tamaño de cada círculo representa la cantidad total de rutas de transporte público identificadas o digitalizadas en cada ciudad participante del proyecto. Las ubicaciones corresponden a los

principales núcleos urbanos desde Jilotepec hasta la costa de Oaxaca, incluyendo Oaxaca de Juárez, Salina Cruz y Puerto Escondido.

GRÁFICO 3. Número de rutas digitalizadas por ciudad

La experiencia en Estado de México y Oaxaca mostró que la clave está en cómo se gestionan los datos desde el inicio. Definir responsables, acordar reglas claras, documentar los cambios y trabajar con aliados locales garantiza que la información siga viva y útil. Estas lecciones resumen lo que hace sostenible un proyecto: gobernanza, colaboración y continuidad.

4. Lecciones aprendidas

4.1 Gobernanza del dato desde el día cero

Un proyecto de datos públicos avanza al ritmo de la toma de decisiones. Por eso, lo primero es acordar quién decide sobre el dato y quien toma esas decisiones. En la práctica, esto significa que la autoridad — municipio o estado — nombra una persona responsable y una persona suplente, define el tiempo que pueden dedicar y habilita un canal sencillo para responder dudas y validar cambios.

Cuando esto existe desde el principio, los equipos pueden resolver preguntas en días, no en semanas; y si hay rotación de personal, el proyecto no se detiene. Dicho de otra forma: la gobernanza del dato no es una formalidad, es el seguro que evita que un trámite o una agenda apretada frenen el avance.

4.2 Digitalizar primero, estandarizar después

Seguimos una regla sencilla: digitalizar primero, estandarizar después. Lo más importante es comenzar, sin esperar a tener todo perfecto. Muchas ciudades no cuentan aún con un archivo GTFS, pero sí disponen de listados de rutas, nombres públicos, orígenes y destinos, o incluso archivos KML. Ese punto de partida vale oro. Cada ciudad puede empezar de inmediato a organizar la información que ya tiene — listados, mapas o geográficos — y ponerla en un formato ordenado. Esa primera organización facilita y acelera el siguiente paso: convertir los datos en un formato estándar como el GTFS. asegurando calidad su У consistencia. La estandarización llegará después, pero si desde el inicio hay claridad sobre el "qué" y el "quién", se reducen retrabajos, se enfoca mejor el trabajo de campo y se gana tiempo en la construcción de la aplicación y en la consolidación de una base de datos pública y sostenible.

4.3 Acuerdo de Alcance de Rutas (AAR)

Una de las lecciones más valiosas es contar con un Acuerdo de Alcance de Rutas, el AAR. El término suena técnico, pero la idea es simple: publicar una "foto oficial" del listado de rutas que servirá de base para producir el GTFS y la aplicación. A partir de esa foto, los cambios que surjan — altas, bajas o ajustes — se registran y se incorporan en un siguiente corte programado. Con esto se evita rehacer entregas una y otra vez cada vez que aparece una novedad. El proyecto opera con estabilidad y, a la vez, se mantiene actualizado.

4.4 Paquete mínimo de datos antes del arranque

También aprendimos que conviene empezar solo cuando existe un mínimo de información listo. No se trata de pedirlo todo, sino lo esencial: un listado de rutas con su operador, el nombre que ve la ciudadanía, el origen, el destino, la fecha de la última actualización y un contacto responsable.

Con esos datos, el equipo técnico puede avanzar sin frenos. Los archivos geográficos ayudan y, si están disponibles, se incorporan; pero no son un requisito para comenzar. Esta sencilla condición de entrada evita semanas de intercambios dispersos y da al proyecto un piso sólido desde el primer día.

4.5 Alianzas locales que multiplican el avance

Las mejores experiencias ocurrieron cuando la autoridad se apoyó en aliados locales: universidades, comunidades de OpenStreetMap y colectivos cívicos. Ellos aportan contexto, validan detalles y, sobre todo, dejan capacidades instaladas para después.

Cuando una ciudad invita a sus universidades a revisar tramos ambiguos o a documentar paradas, no solo se acelera el trabajo, también se forma talento que luego puede mantener los datos. Y cuando la comunidad OSM participa, el conocimiento local se traduce en un mapa más preciso que beneficia a todos.

4.6 Trabajo de campo eficiente

Salir a la calle es necesario, pero no todo minuto en campo tiene el mismo valor. La experiencia mostró que el mejor uso del tiempo es confirmar en terreno solo aquello que no se puede resolver en escritorio: dudas, contradicciones o tramos sin evidencia suficiente.

Antes de pisar la calle, conviene depurar el listado, revisar el mapa, contrastar trazas y detectar dónde están las verdaderas preguntas. Así, las visitas se hacen con una lista breve y precisa. El resultado es un trabajo más rápido, menos costoso y más útil.

La sostenibilidad proviene de instituciones capaces, herramientas abiertas y datos publicables; la replicabilidad se logra combinando método, gobernanza del dato y alianzas locales. Con un equipo focal y un espacio público de datos, cualquier ciudad puede iniciar y escalar progresivamente.

5. Procesos de replicabilidad

5.1 Punto de partida

Para empezar en una nueva ciudad, la autoridad debe tomar una decisión abierta: quiero digitalizar y publicar los datos de transporte. Desde el primer día hay que definir quién se encarga (una

persona responsable y su reemplazo), cómo se actualizan los datos (pasos y tiempos) y por dónde se aprueban y publican (un canal oficial dentro de la entidad.

5.2 Principio operativo

Seguimos una regla sencilla: digitalizar primero, estandarizar después. Esto significa que lo más importante es empezar, sin esperar a tener todo perfecto. Cada ciudad puede comenzar de inmediato a organizar la información que ya tiene — listados de rutas, archivos, mapas o datos geográficos — y ponerlos en un formato ordenado. Esa primera organización facilita mucho el siguiente paso, que es convertirlos en un formato estándar como el GTFS y asegurar su calidad.

5.3 Ruta de implementación recomendada

1. Preparación institucional: El primer paso es definir quiénes será la persona responsable y cuánto tiempo podrán dedicar los equipos locales a este proceso. Es importante acordar los plazos, los recursos disponibles y establecer un espacio de trabajo donde se organizará toda la información y se publicarán los resultados.

- 2. Ordenamiento de insumos: Cada ciudad debe revisar qué información ya tiene: listados de rutas, mapas, nombres de operadores y recorridos. En esta fase se organizan y corrigen los nombres, se revisan los puntos de origen y destino, y se acuerda con las autoridades un listado oficial de rutas, que servirá como referencia para todo el proceso.
- 3. Validación colaborativa: Validación colaborativa. Fase clave en la que, junto con autoridades y aliados técnicos, se revisan y corrigen tanto la cartografía base en OpenStreetMap (continuidad, sentidos, nombres, paradas) como los insumos externos de rutas (KML/KMZ, CSV, listados administrativos, GTFS preliminares). Dado que los datos de transporte siempre pueden perfeccionarse, esta dedicación etapa exige У comunicación constante para cerrar brechas y asegurar la calidad y coherencia del conjunto final.

- 4. Estandarización a GTFS: Una vez que la información está completa y verificada, se convierte al formato GTFS, que permite usar los datos en aplicaciones y análisis de transporte. Este proceso incluye validar cuidadosamente que la estructura cumpla con el estándar y documentar los supuestos y decisiones tomadas.
- 5. Integración y publicación: Con los datos ya estandarizados, se integran en herramientas públicas como Rutómetro y se publican oficialmente en el portal o página institucional, con su versión, fecha y licencia de uso abierta, para que cualquiera pueda consultarlos y utilizarlos.
- 6. Transferencia y cierre: Finalmente, se realiza la transferencia del conocimiento a los equipos locales. Esto incluye explicar cómo mantener los datos actualizados, cómo corregir errores y cómo seguir publicando las nuevas versiones. El objetivo es que la ciudad pueda continuar el trabajo de forma autónoma.

5.4 Gestión de riesgos

Los cambios en la administración pública son naturales y pueden implicar la renovación de equipos o de responsables. Para asegurar la continuidad del proceso, es fundamental contar con procedimientos escritos. accesos institucionales y personas designadas como suplentes, de modo que la gestión de los datos no dependa de cargos específicos. Cuando la información inicial es limitada, se puede comenzar con una versión básica е irla mejorando progresivamente. Las dependencias tecnológicas se reducen utilizando herramientas y estándares abiertos, que garantizan que el proyecto pueda mantenerse sin proveedores exclusivos. Finalmente, para evitar demoras en la publicación, es recomendable preparar el portal o la página pública desde el inicio y poner a disposición una primera versión funcional, que luego se irá perfeccionando.

Gran parte de este trabajo descansa en voluntariado, lo que permite bajos costos y rápida implementación para los gobiernos locales. Sin embargo, esta modalidad está atada a los calendarios académicos. Por ello, es esencial planificar con suficiente anticipación (idealmente, amyor a un semestre) para activar servicio social, prácticas u otros mecanismos de participación estudiantil. No contar con esta previsión incrementa el riesgo para el resto del

proyecto (retrasos, menor cobertura y presión sobre costos).

5.5 Condiciones habilitantes mínimas

Para que una ciudad pueda iniciar y mantener con éxito el proceso de digitalización del transporte, se requiere cumplir algunas condiciones básicas que aseguran la continuidad y la calidad de los resultados.

- Interés institucional: Debe existir una decisión clara de la autoridad de digitalizar y abrir los datos de transporte, incorporando este tema dentro de su agenda y destinando tiempo del personal para participar activamente en el proceso.
- Responsables y tiempos definidos:
 Desde el inicio es necesario establecer personas responsables y sus suplentes, junto con un canal claro para la revisión y validación de los datos. Esto permite que el trabajo no dependa de una sola persona y continúe a pesar de los cambios administrativos.
- Continuidad organizacional: Los proyectos de transporte suelen atravesar cambios de gestión. Por eso se recomienda contar con procedimientos escritos, accesos

institucionales y documentación que garantice que el trabajo pueda continuar sin interrupciones cuando cambie la administración o el equipo técnico.

 Capacidades técnicas en sistemas de información geográfica: Es fundamental que dentro de la entidad haya al menos una persona con conocimientos en SIG o en el manejo de datos geográficos. La digitalización del transporte requiere entender mapas, coordenadas y trazas. Puede apoyarse con consultoría externa, pero siempre debe existir un referente interno con esa capacidad técnica.

IMAGEN 3. Smart City Expo LATAM Congress 2025 Puebla. Foto: Donobelo

- Mantenimiento y responsabilidad continua: El trabajo de mantener actualizados los datos debe recaer en funcionarios o equipos permanentes dentro de la autoridad, y no depender exclusivamente de la duración de un proyecto o convenio específico.
- Información base organizada: Cada ciudad debe disponer de un paquete mínimo de entrada, que incluya el listado de rutas con su operador, nombre público, origen y destino,

- fecha de última actualización y contacto responsable. Esto permite avanzar más rápido en la estandarización.
- Trabajo con aliados locales: El éxito también depende de construir alianzas con universidades. comunidades de OpenStreetMap y organizaciones locales, que puedan colaborar en el levantamiento, validación y mejora de los datos a lo largo del tiempo.

6. Próximos pasos

6.1 Actualización y mantenimiento continuo

Cada autoridad deberá designar una responsable del persona mantenimiento del GTFS, con suplencia y canales de validación claros. Las actualizaciones deben reflejar modificaciones de rutas. paradas, horarios y operadores, manteniendo la trazabilidad y calidad del dato. Esto implica mantener comunicación directa con los transportistas y monitorear la operación mediante retroalimentación del ciudadana datos aplicativo Rutómetro, que permiten identificar quejas, incidencias o cambios operativos no reportados oficialmente.

6.2 Colaboración y control institucional

El mantenimiento de la información debe realizarse en coordinación con los operadores y concesionarios del sistema, promoviendo una cultura de reporte sistemático de cambios. Al mismo tiempo, la autoridad debe ejercer control y verificación periódica del cumplimiento de los trazos y recorridos autorizados, apoyándose en los datos digitales como referencia oficial.

6.3 Ampliación de cobertura y red intermunicipal

Una vez consolidada la base inicial, el siguiente paso consiste en extender la cobertura a nuevos municipios y zonas suburbanas, integrando progresivamente las rutas que conectan distintas jurisdicciones. En el caso del Estado de México, la proximidad con la Zona Metropolitana del Valle de México abre la posibilidad de integración de datos con la Ciudad de México. En Oaxaca, la meta debe orientarse hacia un sistema intermunicipal coordinado que articule los corredores urbanos y suburbanos, conformando una red estatal completa y coherente.

6.4 Aprovechamiento y uso de datos abiertos

El fortalecimiento de la base no solo requiere mantenerla actualizada, sino también fomentar su uso. Los gobiernos estatales y municipales deben impulsar la adopción de los datos abiertos de transporte para planificación, análisis de cobertura, y estudios de accesibilidad y equidad. El uso activo de esta información por parte de la academia, la sociedad civil

y la ciudadanía contribuye a su validación y sostenibilidad.

6.5 Replicabilidad, intercambio y escalamiento

La metodología probada en Toluca, Jilotepec, Oaxaca de Juárez, Salina Cruz y Puerto Escondido es replicable ciudades del otras país. fortalecimiento de capacidades cooperación locales. comunidades de mapeo y la adopción de herramientas libres facilitan su implementación y sostenibilidad. Avanzar hacia redes regionales y nacionales de datos GTFS interoperables permitirá consolidar un ecosistema digital robusto para la movilidad, base para futuras integraciones de Movilidad como Servicio (MaaS).

En 2025, **Eric Cisneros** presentó el caso de Toluca en el workshop de MobilityData, destacándola como una de las pocas ciudades de Latinoamérica con datos de transporte público completos y operativos, además de un aplicativo en producción. Con este aprendizaje, se busca compartir la experiencia y acompañar a otras ciudades en su adopción: combinar

formación local, mapeo colaborativo y software abierto para generar **GTFS interoperables** que impulsen decisiones informadas y mejores servicios de movilidad.

6.6 De ciudad en ciudad: replicar con datos y código abiertos

El proceso se diseñó íntegramente con herramientas open source, de libre acceso: desde la plataforma abierta OpenStreetMap para la cartografía base, editores y validadores hasta los utilizados, y el aplicativo Rutómetro, cuyo código fuente es público. Esto permite a las municipalidades adoptar de inmediato la metodología, sin costos de licencias ni barreras propietarias, y propios ciclos de mantener sus actualización con equipos locales.

Las ciudades pueden reutilizar tanto los datos como el código para crear sus implementaciones propias garantizando transparencia, sostenibilidad y autonomía tecnológica.

El listado completo de herramientas y sus enlaces se encuentra en el Anexo 5.

REFERENCIAS BIBLIOGRÁFICAS

- CityPopulation.de. (s. f.). Jilotepec Municipality (Estado de México): Population (Census 2020).

 https://www.citypopulation.de/en/mexico/admin/m%C3%A9xico/15045 jilotepec/ City

 Population
- CityPopulation.de. (s. f.). Oaxaca Municipalities & localities: Population (Census 2020). (Incluye

 Oaxaca de Juárez y Salina Cruz).

 https://www.citypopulation.de/en/mexico/admin/20 oaxaca/ City Population
- CityPopulation.de. (s. f.). Puerto Escondido (San Pedro Mixtepec, Oaxaca) Urban locality:

 Population (Census 2020).

 https://www.citypopulation.de/en/mexico/oaxaca/san_pedro_mixtepec_dto_/203180009_puerto_escondido/ City Population
- Durand, A. (2023). Mechanisms behind digital inequality in public transport. Transport Policy, 132, 68–80. Elsevier, Ámsterdam, Países Bajos.
 https://doi.org/10.1016/j.tranpol.2023.04.008
- Klinkhardt, C. (2021). Using OpenStreetMap as a data source for attractiveness in travel-demand models. Transportation Research Record: Journal of the Transportation Research Board, 2675(5), 505–515. SAGE Publications, Londres. https://doi.org/10.1177/03611981211001013
- Makarova, I. (2021). Digitalization and new opportunities of urban mobility. En I. Makarova (Ed.), Smart Mobility & Digital Transformation in Urban Transport (pp. 13–34). Springer, Cham, Suiza. https://link.springer.com/chapter/10.1007/978-3-030-69984-1_2
- Mondejar, M. E., Avtar, R., Diaz, H. L. B., Dubey, R. K., Esteban, J., Ghaffar, S., & Zambrano-Monserrate, M. A. (2021). Digitalization to achieve sustainable development goals. Science of the Total Environment, 795, 148707. Elsevier, Ámsterdam, Países Bajos. https://doi.org/10.1016/j.scitotenv.2021.148707
- Palacín, R. (2021). Public transport technology for the future. En R. Palacín (Ed.), Public Transport
 Technology for the Future (pp. 47–66). Routledge, Londres y Nueva York.

 https://www.taylorfrancis.com/chapters/edit/10.4324/9780367816698-47/public-transport-technology-future-roberto-palacin

- **Routledge.** (2023). *Digital Transport Platforms and Urban Mobility*. Routledge, Londres y Nueva York.
- Secretaría de Desarrollo Urbano e Infraestructura del Estado de México. (2024). Numeralia básica de las zonas metropolitanas del Estado de México (Censo 2020). Gobierno del Estado de México. https://sedui.edomex.gob.mx/ ... sedui.edomex.gob.mx
- **Topf, J.** (2022). *Evolution of the OSM data model.* OpenStreetMap Foundation, Birmingham, Reino Unido.
 - https://osmfoundation.org/w/images/e/e6/2022-08-15-study-evolution-of-the-osm-data-model-by-Jochen-Topf CC-BY-SA 4.0.pdf
- United Nations Economic Commission for Europe (UNECE). (2025). Handbook on digitalization and automation in intermodal freight transport (Rev. Ed.). United Nations, Ginebra, Suiza. https://unece.org/sites/default/files/2025-01/Handbook%20on%20Digitalization%20and%20Automation%20in%20Intermodal%20Freight%20Transport%20EN.pdf
- Van der Putten, M. W. A. (2017). Spatial data quality of public transport data in OpenStreetMap

 [Tesis de maestría, Universiteit Utrecht]. Universidad de Utrecht, Países Bajos.

 https://studenttheses.uu.nl/bitstream/handle/20.500.12932/30593/Thesis_MartijnVanDerPutten_Final.pdf
- Varela, A. (2007). *Urban and Suburban Transport in Mexico City*. International Transport Forum / OECD. https://www.itf-oecd.org/sites/default/files/docs/varela 0.pdf itf-oecd.org

ANEXO 1. Visualización de redes de transporte Público

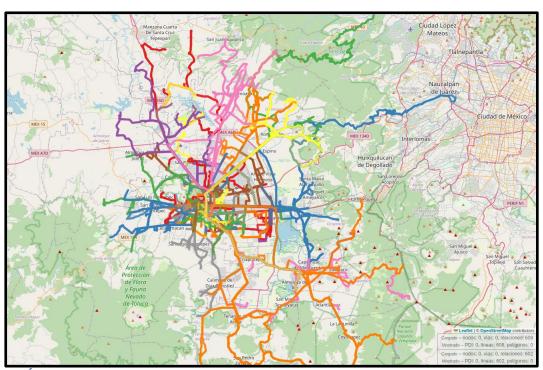


GRÁFICO 4 Visualización rutas área metropolitana de Toluca https://overpass-turbo.eu/s/2e3u

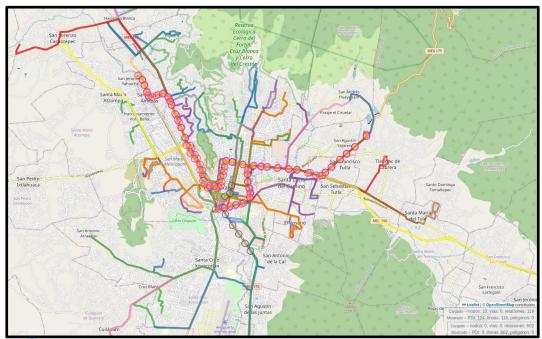


GRÁFICO 5 Visualización rutas Oaxaca de Juárez https://overpass-turbo.eu/s/2e3A

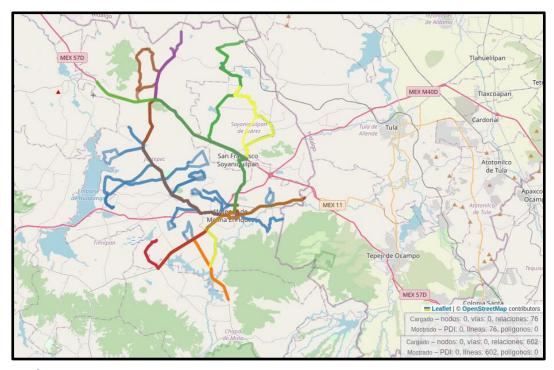


GRÁFICO 6 Visualización rutas Jilotepec https://overpass-turbo.eu/s/2e3B

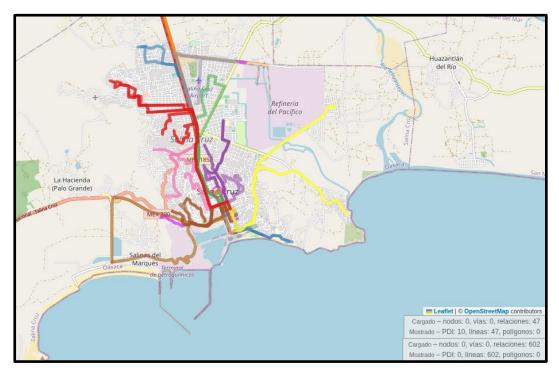


GRÁFICO 7 Visualización rutas Salina Cruz https://overpass-turbo.eu/s/2e3C

GRÁFICO 8 Visualización rutas Puerto Escondido https://overpass-turbo.eu/s/2e3D

ANEXO 2. Tabla Resumen

Ciudad	Rutas mapeadas	Universidades aliadas	Validado por
Toluca	622	UAEMex	SEMOVEstado de México
Jilotepec	65	_	 SEMOV Estado de México Dirección de Desarrollo Urbano y Movilidad Jilotepec
Oaxaca de Juárez	110	La Salle - URSE	SEMOVI Estado de Oaxaca
Salina Cruz	27	La Salle - URSE	SEMOVI Estado de Oaxaca
Puerto Escondido	32	_	SEMOVI Estado de Oaxaca

Tabla 12. Resumen de Rutas digitalizadas

ANEXO 3. Talleres y Capacitaciones

Ciudad / Estado	Fecha	Participantes	Temas principales	Organizaciones involucradas
Oaxaca de Juárez, Oaxaca	Enero 2025	8 (SEMOVI, URSE, La Salle Oaxaca, HOT)	Introducción al mapeo colaborativo, OSMTracker, QGIS para validación, Public Transport v2 en OSM	SEMOVI Oaxaca, Trufi Association, HOT, Codeando México
Salina Cruz, Oaxaca	Mayo 2025	9 (Programa "Mi Primera Chamba", SEMOVI)	Recolección de trazas GPS, revisión de rutas suburbanas, uso de JOSM y QField	SEMOVI Oaxaca, Trufi Association, Codeando México
Puerto Escondido, Oaxaca	Mayo 2025	7 (SEMOVI, voluntarios locales)	Mapeo colaborativo en campo, identificación de rutas activas, validación en QGIS	SEMOVI Oaxaca, Trufi Association, HOT, Codeando México
Toluca de Lerdo, Estado de México	Noviembre 2024	15 (UAEMex, Zona 1 SEMOV, comunidad OSM)	GIS Day / Data Day: mapeo colaborativo, StreetComplete, validación de rutas GTFS	SEMOV Edomex, UAEMex, Codeando México, Trufi Association

Tabla 13: Resumen capacitaciones

ANEXO 4. Reporte de actividades de comunicación

La agencia Donobelo desarrolló una estrategia integral de comunicación para el proyecto *MapaData: Creando Rutas Juntos*, que abarcó diagnóstico, planificación, ejecución en redes sociales y documentación audiovisual en Oaxaca y Toluca. Su trabajo fortaleció la visibilidad del proyecto, posicionando los resultados de digitalización de transporte público y promoviendo la participación ciudadana mediante una narrativa clara y visualmente coherente.

Etapa / Entregable	Descripción de actividades	Productos y resultados	Periodo
Diagnóstico de Comunicación y Percepción	Levantamiento de información sobre percepciones, públicos meta y canales adecuados para la difusión del proyecto. Incluyó entrevistas con Trufi Association, HOT y Codeando México; encuestas a mapeadores; y análisis comparativo de campañas análogas.	 Informe "Diagnóstico de Comunicación y Percepción" Definición de pilares de comunicación (usuario, cartografía digital, participación comunitaria y datos abiertos) Segmentación de audiencias (mapeadores activos, nuevos voluntarios, ciudadanía general) Estrategia multicanal (Instagram, TikTok, Facebook, LinkedIn) 	Octubre – Noviembre 2024
Plan de Comunicación y Contenidos	Desarrollo de narrativa visual y verbal de la campaña "MapaData: Creando Rutas Juntos", definiendo tono, identidad y mensajes clave para cada plataforma digital.	 Guía de identidad y narrativa de la campaña Calendario editorial y piezas modelo Lineamientos de uso de hashtags y etiquetado a aliados (Trufi Association, HOT, Codeando México, GIZ) Plan de contenidos audiovisuales y testimoniales 	Diciembre 2024 – Enero 2025
Reporte de Social Media I	Ejecución de la primera fase de difusión en redes sociales,	- Publicaciones en Instagram y Facebook con enfoque territorial ("Portales de	Marzo – Abril 2025

(Cobertura Oaxaca y Toluca)	con cobertura de los hitos del proyecto (capacitaciones, mapeos, entrevistas).	Toluca", "Iglesia del ex Marquesado", "Teatro Macedonio Alcalá") - Cobertura audiovisual de campo - Piezas gráficas y clips de video difundidos en redes sociales del proyecto y de los aliados	
Podcast "Ciudades y Transporte Sustentable"	Conversación sobre cómo los datos abiertos habilitan políticas de movilidad, la experiencia en entidades de México con GIZ, y el papel de HOT y Trufi Association en la digitalización de rutas de transporte público. Duración: 15:10.	URL: https://open.spotify.com/episode/7yKR sB0LyoxKBHdUcyOhSp	Abril 2025
Reporte de Social Media II (Difusión extendida y cierre)	Segunda etapa de la campaña, enfocada en resultados y testimonios. Se amplió la visibilidad del proyecto y se generó contenido de cierre.	 Reporte de métricas y engagement en redes sociales Piezas de video y fotografía en Toluca y Oaxaca (Centro Cultural Mexiquense, Puerto Escondido, etc.) Publicaciones en Instagram, LinkedIn y Facebook Enlaces a contenidos destacados: Instagram Post 1 LinkedIn Post Facebook Post Consolidación de narrativa audiovisual final para difusión institucional 	Junio – Agosto 2025

Tabla 14. Actividades de Comunicación

ANEXO 5. Herramientas tecnológicas disponibles

Herramienta	Para qué sirve	Cómo se usa	URL
OpenStreetMap (OSM)	Mapa base abierto para mantener calles, paradas y puntos de interés.	Edición colaborativa con cuentas gratuitas; ideal para que la autoridad mantenga su red vial y paraderos.	https://www.openstree tmap.org
iD Editor (web)	Editor simple de OSM en el navegador.	Ideal para ediciones rápidas, mapeo guiado, validaciones puntuales; no requiere instalación.	https://www.openstree tmap.org/edit
JOSM (escritorio)	Editor avanzado de OSM para cargas masivas y control de calidad.	Permite validaciones, manejo de múltiples capas, importación/exportación de datos y plugins especializados.	https://josm.openstreet map.de
OSMTracker (Android)	Recolección de trazas GPS , fotos y notas de campo.	Útil para levantar recorridos y puntos en territorio; luego se integra a OSM/JOSM.	https://wiki.openstreet map.org/wiki/ES:OSMTr acker (Android)
Mapillary	Imágenes de calle colaborativas para verificación remota.	Subida/consulta de imágenes tipo "street-level" para revisar señalización, paraderos y sentidos.	https://www.mapillary.
KartaView	Imágenes de calle abiertas (ex- OpenStreetCam).	Similar a Mapillary; útil para evidencias visuales y verificación de campo.	https://kartaview.org
QGIS	SIG de escritorio para visualizar y preparar datos (Shapefile, GeoPackage, GeoJSON, CSV, KML/KMZ).	Limpieza y organización de capas; cruces con cartografía institucional y OSM.	https://qgis.org
Overpass Turbo	Consultas dinámicas a OSM (filtrar/descargar paradas, vías, rutas, etc.).	Construir queries para extraer exactamente lo que se necesita y exportarlo en varios formatos.	https://overpass- turbo.eu

Plantillas GTFS (CSV/Sheets)	Estructuras base de routes, trips, stops, stop_times, calendar, etc.	Llenado y mantenimiento de tablas para construir el feed GTFS.	
Scripts de generación de GTFS (GitHub)	Scripts del proyecto para transformar insumos (KML/GeoJSON/CSV) en tablas GTFS y automatizar QA básico.	Uso por equipos técnicos para producir/actualizar el feed a partir de datos oficiales y de OSM.	https://github.com/truf i-association/mexico- app

Tabla 15: Herramientas tecnológicas.

